BIOB - Biology-General

BIOB 100DN. Organism Function. 3 Credits. (3 Lec) F
This course examines biological origins and diversity of life on Earth, emphasizing biodiversity of principal biomes, origins of biodiversity, and exploring form, function, and adaptation of relevant biological systems, including photosynthesis, nutrition and immunity. The course also explores relevant ecological relationships among organisms with an emphasis on animals and plants.

BIOB 105CS. Introduction to Biotechnology. 3 Credits. (3 Lec) F
Introduction to an ever-growing industry. Course is designed to demonstrate the significance of biotechnology in today's world. Lecture series presented by research professors, social scientists, and industrial experts.

BIOB 110CS. Introduction to Plant Biology. 3 Credits. (3 Lec) S
Provides an understanding of basic plant science principles and the related environmental components that impact society. Current questions in plant biology, agriculture, and ecology are used to develop problem-solving skills and integrative thinking.

BIOB 140R. Honors Molecular Biology. 4 Credits. (3 Lec, 3 Lab) S
PREREQUISITE: Restricted entry through the Honors Program. An introduction to molecular biology research with an emphasis on how gene expression is regulated in cells and organisms. Hands-on learning of basic techniques in cell and molecular biology will culminate in an independent research project.

BIOB 160. Principles of Living Systems. 4 Credits. (3 Lec, 1 Lab) F,S
PREREQUISITE: CHMY 121IN, CHMY 141, or consent of instructor. Introduction to cellular organization and function. Topics covered include synthesis and function of macromolecules, cell organelles and structure, energy transformations in living systems, respiration, photosynthesis, the cell cycle, classical genetics, molecular genetics, and biotechnology.

BIOB 170DN. Principles of Biological Diversity. 4 Credits. (3 Lec, 1 Lab) F,S
This course examines the biology, ecology, and evolutionary relationships among living organisms. All forms of life will be considered, from single celled prokaryotes to multicellular eukaryotic plants and animals.

BIOB 205. Methods in Biotechnology. 4 Credits. (4 Lab) F,S
PREREQUISITE: BIOC 105. This course will challenge students in the biotech major to learn a series of essential molecular techniques focusing on research and faculty interaction. The techniques learned will be highly applicable to the biotech industry, giving students a post-graduation competitive edge.

BIOB 260. Cellular and Molecular Biology. 4 Credits. (3 Lec, 1 Lab) F,S
PREREQUISITE: CHMY 141 or CHMY 151, and STAT 216Q or M 171Q or M 181Q, with a grade of "C-" or better. COREQUISITE: CHMY 143 or 153. Introduction to biological macromolecules, cell structures and function, and gene structure and expression. The laboratory portion will include both wet labs and computer-based modules.

BIOB 280. Miracle molds, magic mushrooms: Fungi in our world. 3 Credits. (3 Lec) S
PREREQUISITES: BIOC 100, 110, 170 or BIOC 103 A presentation of the fungi and their roles in nature and in shaping past and present civilizations. The historical and practical significance of fungi as decomposers, as pathogens, as food, and as sources of mind-altering chemicals will be emphasized.

BIOB 290R. Undergraduate Research. 1-6 Credits. (1-6 Ind; max unlimited) On Demand
PREREQUISITE: Sophomore standing. Directed undergraduate research. Course will address responsible conduct of research.

BIOB 291. Special Topics. 1-4 Credits. (1-4 Lec; 12 cr max) On Demand
PREREQUISITE: None required but some may be determined necessary by each offering department. Courses not required in any curriculum for which there is a particular one-time need, or given on a trial basis to determine acceptability and demand before requesting a regular course number.

BIOB 318. Biometry. 3 Credits. (3 Lec) F
PREREQUISITE: C- or better in any 100 level or above Math course. Analysis and interpretation of biological data. Topics include: analysis of frequency data, measures of center and spread, probability distributions, statistical inference for single means, and proportions, two sample means and proportions, linear regression, and correlation. Use of computer software is emphasized in solving problems.

BIOB 375. General Genetics. 3 Credits. (3 Lec) F,S,Su
PREREQUISITE: BIOC 160, BIOC 170IN, BIOC 260, or BIOC 360. Introduction to classical and molecular genetics of eukaryotes, with emphasis on transmission genetics, the structure and regulation of genes, and mechanisms of genetic change.

BIOB 377. Practical Genetics. 3 Credits. (3 Lec) S
PREREQUISITE: BIOC 260 or consent of instructor. Examination of the modes of inheritance, gene expression and genetic manipulation of eukaryotic organisms, particularly those of flowering plants and mammals. Population genetics, genetic diversity and quantitative genetics are also discussed.

BIOB 410. Immunology. 3 Credits. (3 Lec) F
COREQUISITE: CHMY 211 or CHMY 321. Fundamentals of cellular and molecular immunology including consideration of structure, genetics and function of immunoglobulin, T-cell receptors and major histocompatibility antigens; regulation of the immune response; transplantation and immunological diseases.

BIOB 412. Hybridomas. 2 Credits. (1 Lec, 1 Lab) F
PREREQUISITE: BIOM 360 or consent of instructor. This course will provide students with a thorough theoretical and practical appreciation and understanding of the uses and methods involved in the production of monoclonal antibodies.

BIOB 413. Flow Cytometry. 1 Credit. (1 Lec) F
PREREQUISITE: BIOM 360, BIOM 375, or consent of instructor. Theory and practice of flow cytometry with an emphasis on the analysis of mammalian cells.

BIOB 414. Advanced Microscopy. 1 Credit. (.5 Lab) F
PREREQUISITE: BIOM 360, BIOM 375, or consent of instructor. Introduction to instrument design, operation and applications, and to modern techniques in preparing specimens for microscopic analyses, including computer-assisted microscopic imaging technology and microinjection.

BIOB 415. Adv Immunology Methods. 1 Credit. (.5 Lab) F
PREREQUISITE: BIOM 360, BIOM 375, or consent of instructor. This course provides hands-on experience on assays commonly used in immunology for the detection of an immune response.

BIOB 420. Evolution. 3 Credits. (3 Lec) S
PREREQUISITE: BIOM 375, BIOM 377, or BIOM 320. For seniors in biology. Evolutionary theory is presented and takes two principle directions, the study of evolutionary history, and the study of natural selection.

BIOB 424. Ethical Practice of Science. 3 Credits. (3 Sem) S
PREREQUISITE: PHIL 312, PHIL 321, or at least one three-hundred level series of any science course. Examines the philosophy of the scientific process with specific focus on the ethical responsibilities of scientists and to examine policies and procedures developed by the scientific community to ensure integrity in the research process.

BIOB 425. Adv Cell & Molecular Biology. 3 Credits. (2 Lec, 1 Rct) S
PREREQUISITE: BIOM 260, BIOM 320, and BCH 380. In-depth study of cell structure and function.

BIOB 428. Molecular Evolution. 3 Credits. (3 Lec) F
PREREQUISITE: please check in with instructor. The educational objectives of this course are to provide advanced, upper division undergraduates and graduate students with a basic introduction to molecular evolution. The study of molecular evolution encompasses the origin and evolution of life on earth at the molecular level.

BIOB 430. Plant Biotechnology. 3 Credits. (2 Lec, 1 Lab) S
Alternate, even years PREREQUISITE: BCH 380 or BIOM 375 or BIOM 377. Humans have historically altered plants to meet food and fiber needs. Our ability to transfer genes from organism to organism is accelerating this process. The principles of plant genetic engineering will be discussed along with hands-on laboratory.

BIOB 438. Developmental Mechanisms. 3 Credits. (3 Lec) F, 4 Credits. (2 Lec, 1 Lab) On Demand
PREREQUISITE: BIOM 425. This course will focus on the molecular and cellular mechanisms which drive developmental processes.

BIOB 476R. Gene Construction. 4 Credits. (1 Lec, 3 Lab) F
PREREQUISITE: BIOM 425 and BCH 380. The goals are to provide upper level students with the opportunity of designing and building their own genes. The goal of the course is to use this design experience to learn basic techniques in cell and molecular biology.

BIOB 477. Genome Science and Gene Expression. 5 Credits. (2 Lec, 3 Lab) S
PREREQUISITE: BCH 380 Covers the theory of eukaryotic and prokaryotic gene expression and methods for measuring gene transcription in cells. This course is heavily focused on laboratory skills and will train students in modern practice of genomics and functional gene expression using DNA cloning, automated DNA sequencing, and comprehensive sequence analysis.

BIOB 480. Conservation Genetics. 3 Credits. (3 Lec) F
PREREQUISITE: BIOM 375, BIOM 420, and STAT 216Q completed (no concurrent registration). Introduces the theory and practice of conservation genetics, focusing primarily on animals. Case studies will be used liberally, and emphasis will be placed on interpreting genetic data. Readings will include primary literature. Cross-listed with BIOE 548.
**BIOB 484. Population Genetics. 3 Credits.** (3 Lec) F alternate years, to be offered even years.  
PREREQUISITE: BIOB 375. Introduction to theory and empirical data on genetics of populations. Topics covered include modeling natural and artificial selection, nonrandom mating, gene flow and effective population size as factors influencing the maintenance of genetic variation in populations. The approach emphasizes the development of simple mathematical models to illustrate fundamental conceptual issues in the field.

**BIOB 490R. Undergraduate Research. 1-4 Credits.** (1-6 Ind; 12 cr max) F,S,Su  
PREREQUISITE: Junior or Senior standing and approval of instructor and approval of department head. Undergraduate research which may culminate in a research paper, journal article, or undergraduate thesis. Course will address responsible conduct of research.

**BIOB 491. Special Topics. 1-4 Credits.** (1-4 Lec; 12 cr max) On Demand  
Max 12 credits, maximum of 6 as electives in Organismal Biology Option.  
PREREQUISITE: Course prerequisites as determined for each offering. Courses not required in any curriculum for which there is a particular one-time need, or given on a trial basis to determine acceptability and demand.

**BIOB 492. Independent Study. 1-3 Credits.** (1-3 Ind; 6 cr max) F,S,Su  
PREREQUISITE: Junior standing, consent of instructor and approval of department head. Directed research and study on an individual basis.

**BIOB 494. Seminar/Workshop. 1 Credit.** (1 Sem; 4 cr max) F  
PREREQUISITE: Junior standing and as determined for each offering. Topics offered at the upper division level which are not covered in regular courses. Students attend and write critiques of seminar presentations by professional biologists.

**BIOB 497. Educational Methods: Biology. 2 Credits.** (2 Lab; 4 cr max) F,S,Su  
PREREQUISITE: Junior or senior standing, consent of instructor and department head. Provides deeper contact with a subject for those considering an academic profession. This provides experience in a teaching laboratory under detailed academic supervision in recognition that teaching enhances learning. Includes the preparation, organization, presentation of materials, and student evaluation.

**BIOB 498. Internship/Cooperative Edu. 1-6 Credits.** (1-6 Ind; 6 cr max) F,S,Su  
PREREQUISITE: Junior standing, consent of instructor and approval of department head. An individualized assignment arranged with an agency, business, or other organization to provide guided experience in the field.

**BIOB 499. Senior Thesis/Capstone. 2 Credits.** (2 Sem) F,S  
PREREQUISITE: Senior standing in the Cell Biology & Neuroscience Department or in the Plant Sciences & Plant Pathology Department. Senior capstone course. Students are expected both to present and to discuss advanced topics from the current biomedical literature. These topics will expand upon material presented in regular courses in the biomedical science curriculum. Students will write at least one major paper.

**BIOB 524. Ethical Practice of Science. 3 Credits.** (3 Sem) S  
This course exposes students to the ethical issues and federal requirements they will likely encounter throughout their careers and helps develop skills for resolving ethical issues encountered in scientific research.

**BIOB 525. Adv. Cell & Molecular Biology. 3 Credits.** (2 Lec 1 Rec) S  
PREREQUISITES: BIOB 260 and BCH 380 or BCH 441, and BIOB 375 or BIOH 320 In-depth study of cell signaling, structure and function.