CSCI 107. Joy and Beauty of Computing. 3 Credits. (3 Lec) F
Examines the computing field and how it impacts the human condition.
Introduces exciting ideas and influential people. Provides a gentle introduction to
computational thinking using the Python programming language.

CSCI 111. Programming with Java I, 4 Credits. (3 Lec, 1 Lab) F,S
COREQUISITE: M 151Q. Introduction to programming: program design, analysis,
and implementation in Java, including I/O, assignment, decision, iteration, scalar
types, arrays, control structures, methods, classes, and common data types.
No previous programming experience required.

CSCI 112. Programming with C I, 3 Credits. (2 Lec, 1 Lab) S
PREREQUISITE: CSCI 111 or CSCI 127 or EEE 101. C Programming
knowledge. Introduces imperative programming and the C standard library. Course
covers pointers, memory management and structures.

CSCI 127, Joy and Beauty of Data. 4 Credits. (3 Lec, 1 Lab) F,S
COREQUISITE: M 151Q Provides a gentle introduction to the exciting world of
data and data science. Students expand their ability to solve problems
with Python by learning to display lists, files, dictionaries and object-oriented
programming. Data science libraries are introduced that enable data to be
manipulated and displayed. To succeed in this course, either basic computer
literacy or CSCI 107 is recommended.

CSCI 132. Basic Data Structures and Algorithms, 4 Credits. (3 Lec, 1 Lab) F,S
PREREQUISITE: CSCI 111 or CSCI 127 and M 151Q. An examination of
advanced Java and basic data structures and their application in problem solving.
Data structures include stacks, queues and lists. An introduction to algorithms
employing the data structures to solve various problems including searching and
sorting, and recursion. Understanding and using Java class libraries. The laboratory
uses Java. Introduces Big-O Notation.

CSCI 215CS. Social & Ethical Issues in CS, 3 Credits. (2 Lec, 1 Rec) F
PREREQUISITE: W core and US core. Social and ethical issues as they relate to
computing, including privacy, risks, computer abuse, commerce, professionalism,
free speech, intellectual property, social justice, and current issues. History of
computing.

CSCI 232. Data Structures and Algorithms, 4 Credits. (3 Lec, 1 Lab) S
PREREQUISITE: CSCI 132. Advanced data structures and programming
techniques and their application. Topics include: trees, balanced trees, graphs,
dictionaries, hash tables, heaps. Examines the efficiency and correctness of
algorithms. The laboratory uses Java. CSCI 246 is recommended as a prerequisite.

CSCI 246. Discrete Structures, 3 Credits. (3 Lec) F
PREREQUISITE: M 171Q. COREQUISITE: CSCI 132. This course covers logic,
discrete probability, recurrence relations, Boolean algebra, sets, relations, counting,
functions, maps, Big-O notation, proof techniques including induction, and proof
by contradiction.

CSCI 290R. Undergraduate Research. 1-6 Credits. (1-6 hr; max unlimited) F,S
Directed undergraduate research which may culminate in a written work or other
creative project. Course will address responsible conduct of research. May be
repeated.

CSCI 291. Special Topics. 1-4 Credits. (1-4 Lec; 12 cr max) On Demand
Max 12 cr. PREREQUISITE: To be determined based on actual topic offered.
Courses not required in any curriculum for which there is a particular one-time
need, or given on a trial basis to determine acceptability and demand before
requesting a regular course number.

CSCI 292. Independent Study. 1-3 Credits. (1-3 hr; 3 cr max) On Demand
Max 3 cr. PREREQUISITE: Consent of instructor and approval of department head.
Directed research and study on an individual basis.

CSCI 305. Concepts/Programming Languages, 3 Credits. (3 Lec) S
PREREQUISITE: CSCI 132 and CSCI 246. An examination of several
programming paradigms, and languages, as well as their application and underlying
execution model. Paradigms examined include imperative, object-oriented,
functional, logic and string based. Students will gain exposure to a variety of
languages such as C, C++, Scheme, Prolog and Perl.

CSCI 338. Computer Science Theory. 3 Credits. (3 Lec) S
PREREQUISITE: CSCI 246 and M 171Q. Formal languages, theory, automata,
Turing Machines, computability, the Church-Turing thesis, computational
complexity, and NP-completeness.

CSCI 351. Systems Administration. 3 Credits. (3 Lec) S
PREREQUISITE: CSCI 112 and CSCI 232. The administration and management
of Linux computer systems. Includes installation, user/process management,
configuration of services and device handling. A thorough knowledge of Linux/
Unix command structure is required.

CSCI 361. Computer Architecture. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 112 and CSCI 232. The structure and function of computer
systems: CPU, memory, I/O. Includes digital logic, data type, instruction set design,
pipelining, RISC, parallel processing, and assembly language programming.

CSCI 422. Advanced Algorithm Topics. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 246 and CSCI 232. A rigorous examination of advanced
algorithms and data structures. Topics include average case analysis, probabilistic
algorithms, advanced graph problems and theory, distributed and parallel
programming. CSCI 338 is recommended as a prerequisite.

CSCI 440. Database Systems. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 232. DBMS architecture; major database models;
relational algebra fundamentals; SQL query language; index file structures, data
modeling and management, entity relationship diagrams.

CSCI 441. Computer Graphics. 3 Credits. (3 Lec) S odd years.
PREREQUISITE: M 221 and CSCI 232. High resolution computer graphics. 3D
graphics programming using a high level API. Vector mathematics for graphics.
Graphics primitives. Curve and surface representations. Transformations using
matrices and quaternions. Representing natural objects with particle systems
and fractals. Shading and lighting models. Global illumination models. Color
representations.

CSCI 442. Comp Vision: Robot Vision. 3 Credits. (3 Lec) S odd years.
PREREQUISITE: CSCI 232. Image processing techniques are used to quantify
and manipulate visual information in diverse applications such as satellite imagery,
robotic vision, and animation. Topics include enhancement, representation,
restoration, segmentation, and digitization techniques.

CSCI 446. Artificial Intelligence. 3 Credits. (3 Lec) F even years.
PREREQUISITE: CSCI 232 and CSCI 246. The fundamental bases of artificial
intelligence: knowledge representation, search, and learning. Applications include
game playing, neural networks, and expert systems.

CSCI 447. Machine Learning: Soft Computing. 3 Credits. (3 Lec) F odd years
PREREQUISITE: CSCI 232 and CSCI 246. An exploration of biologically inspired
machine learning models and algorithms, including evolutionary algorithms, neural
networks, swarm intelligence, and fuzzy systems. An emphasis is placed on results
from current research in computational intelligence. Students engage in class
discussions and team projects.

CSCI 451. Computational Biology. 3 Credits. (3 Lec) F odd years
PREREQUISITE: CSCI 232 and CSCI 246. This course surveys classic and recent
problems from computational biology. Topics covered include algorithms for
genomic sequencing and searching, protein structure prediction, and regulatory
network discovery. Co-convened with CSCI 551.

CSCI 455. Embedded Systems: Robotics, 3 Credits. (3 Lec) S even years.
PREREQUISITE: CSCI 232 and CSCI 361 or EEE 371. The basic tools and
techniques of embedded systems using robotics as a platform. Student teams will
build an autonomous mobile robot, and learn to program it to perform increasingly
sophisticated behaviors. Besides providing an introduction to autonomous mobile
robot technologies, the students also learn key concepts of mechanics, electronics,
programming techniques, and systems design and integration.

CSCI 460. Operating Systems. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 232 and CSCI 361 or EEE 371. Operating systems
design including necessary hardware support. Processes, threads, concurrent

CSCI 466. Networks. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 232 and CSCI 112. How computer systems are
configured to communicate with each other. A thorough knowledge of Linux/
Unix command structure is required.

CSCI 468. Compilers. 4 Credits. (3 Lec, 1 Lab) S
COREQUISITE: CSCI 338 and CSCI 305. Senior capstone course. Compiler
dergin and construction. Scanning, parsing, symbol tables, semantic analysis,
intermediate representations, run-time memory management, target code
generation, and optimization. Implementation of a small compiler.
CSCI 476. Computer Security. 3 Credits. (3 Lec) S
PREREQUISITE: CSCI 232. Introductory to computer security. Covers security issues in software design and development from technical, social and legal viewpoints. Topics include cryptography, security models, software security, authentication, authorization, and system security. CSCI 466 is recommended as a prerequisite.

CSCI 477. Simulation. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 112, consent of instructor, and a probability or statistics course. Discrete and continuous simulation modeling methodology using a computer simulation language; random number generation, output analysis, validation, and verification; application to varied system design and analysis problems. Cross-listed with EIND 422.

CSCI 481. Program Assessment. 0 Credits. (0 Ind) F,S
PREREQUISITE: Graduating Senior. Student participation in Computer Science program assessment activities such as taking the Computer Science Major Field Test.

CSCI 482R. Interdisciplinary Project Instruction. 1 Credit. (1 Rct) F
PREREQUISITE: Senior standing. COREQUISITE: ESOF 322. First part of a senior capstone sequence for the interdisciplinary option. Classroom instruction that prepares a student to undertake an interdisciplinary project that relates computing to the student's minor.

CSCI 483R. Interdisciplinary Project. 3 Credits. (3 Ind) S
PREREQUISITE: CSCI 482R. Second part of a senior capstone sequence for the interdisciplinary option. Students undertake an interdisciplinary project and present their results through a written report, a poster and an oral presentation.

CSCI 490R. Undergraduate Research. 1-6 Credits. (1-3 Ind; 12 cr max) On Demand
Max 12 cr. PREREQUISITE: Consent of instructor. Directed undergraduate research which may culminate in a research paper, journal article, or undergraduate thesis. Course will address responsible conduct of research. May be repeated.

CSCI 491. Special Topics. 1-4 Credits. (1-4 Ind; 12 cr max) On Demand
Max 12 cr. PREREQUISITE: To be determined based on actual topic offered. Courses not required in any curriculum for which there is a particular one-time need, or given on a trial basis to determine acceptability and demand before requesting a regular course number. Convened with CSCI 591.

CSCI 492. Independent Study. 1-4 Credits. (1-3 Ind; 6 cr max) On Demand
Max 6 cr. PREREQUISITE: Junior standing, consent of instructor, and approval of director of the School of Computing. Directed research and study on an individual basis.

CSCI 494. Seminar. 1-4 Credits. (1-4 Sem; 4 cr max) On Demand
Max 4 cr. PREREQUISITE: Junior standing and as determined by each offering. Topics offered at the upper divisional level that are not covered in regular courses. Students participate in preparing and presenting discussion material.

CSCI 495. Field Work/Practicum. 1 Credit. (1 Ind; 2 cr max) F,S
Max 2 cr. PREREQUISITE: Junior standing and CSCI 232. Directed assistance to, and involvement in labs, with lower division CS students. Can only complete once.

CSCI 498. Internship. 1-6 Credits. (1-6 Ind; 6 cr max) On Demand
PREREQUISITE: Junior standing, consent of instructor, and approval of director of the School of Computing. An individualized assignment arranged with an agency, business or other organization to provide guided experience in the field.

CSCI 520. Distributed Systems. 3 Credits. (3 Lec) S even years
PREREQUISITE: CSCI 432 and CSCI 466. The design and implementation of software systems that utilize multiple host computer networks as a foundation. Concurrency control, homogeneous and heterogeneous systems, interprocess communication, protocols and application design.

CSCI 532. Algorithms. 3 Credits. (3 Lec) S
PREREQUISITE: CSCI 232. Concrete time and space complexity; combinatorial algorithms; greedy algorithms; dynamic programming; probabilistic and randomized algorithms; branch-and-bound algorithms. CSCI 432 is recommended as a prerequisite.

CSCI 535. Computational Topology. 3 Credits. (3 Lec) S
COREQUISITES: CSCI 532 or M 461 or M 511 or consent of the instructor. Provides an introduction to topological data analysis (TDA). This course will cover the topological, geometric, and algebraic tools used in TDA. Specific topics covered include persistent homology, Reeb graphs, and minimum homotopy area. Students will explore a data set of their choice in a course project, and learn how to apply the tools discussed in lecture.

CSCI 537. Computer Security. 3 Credits. (3 Lec) F
PREREQUISITE: CSCI 338. Turing machine computability and decidability; abstract time and space complexity; intractability.

CSCI 540. Advanced Database Systems. 3 Credits. (3 Lec) F odd years
PREREQUISITE: CSCI 440 or consent of instructor. Advanced database models including spatial, temporal, and object-oriented; advanced data indexing techniques, data warehousing and query optimization.

CSCI 541. Computer Graphics. 3 Credits. (3 Lec) S odd years

CSCI 547. Machine Learning. 3 Credits. (3 Lec) S even years.
PREREQUISITE: CSCI 448. An exposure to advanced topics from the field of artificial intelligence with an emphasis on machine learning. Example topics include Bayesian learning, evolutionary computation, and cognitive science. CSCI 446 is a recommended prerequisite.

CSCI 548. Reasoning Uncertainty. 3 Credits. (3 Lec) S odd years
PREREQUISITE: An exploration of problem solving using structured probabilistic models. Topics in probabilistic representations, inference algorithms, and learning such models from data will be explored. CSCI 446 is a recommended prerequisite. Background in probability recommended.

CSCI 550. Data Mining. 3 Credits. (3 Lec) F even years
PREREQUISITE: A probability or statistics course. Clustering, classification and pattern recognition; performing automated discovery of knowledge from a data set.

CSCI 551. Adv Computational Biol. 3 Credits. (3 Lec) F odd years
PREREQUISITE: CSCI 432. This course examines a variety of algorithmic computational biology topics with an emphasis on elucidating new research problems. Co-convened with CSCI 451.

CSCI 565. Wireless Networks and Mobile Computing. 3 Credits. (3 Lec) F even years
PREREQUISITES: CSCI 466 or (EELE 445 and EELE 447). This course introduces the topics of wireless networks and mobile computing. Students will be exposed to different technologies of mobile computing, both software and hardware, and be able to use them to perform wireless networking analysis.

CSCI 566. Advanced Networking. 3 Credits. (3 Lec) S odd years
PREREQUISITE: CSCI 466. This graduate-level course covers advanced topics in networking, with emphasis on IP and wireless networks. After taking this course, the students are expected to know the state-of-the-art in networking algorithms, protocols and architectures, and to understand how networking research is done.

CSCI 590. Master’s Thesis. 1-10 Credits. (1-10 Ind; max unlimited) F,S
PREREQUISITE: Master’s standing.

CSCI 591. Special Topics. 1-4 Credits. (1-4 Ind; 12 cr max) On Demand
Max 12 cr. PREREQUISITE: Upper division courses and others as determined for each offering. Courses not required in any curriculum for which there is a particular one-time need, or given on a trial basis to determine acceptability and demand before requesting a regular course number. Convened with CSCI 491.

CSCI 592. Independent Study. 1-3 Credits. (1-3 Ind; 6 cr max) On Demand
Max 6 cr. PREREQUISITE: Graduate standing, consent of instructor and approval of director of the School of Computing. Directed research and study on an individual basis.

CSCI 594. Seminar. 1 Credit. (1 Sem; 4 cr max) On Demand
Max 4 cr. PREREQUISITE: Graduate standing or seniors by petition. Course prerequisites as determined for each offering. Topics offered at the graduate level which are not covered in regular courses. Students participate in preparing and presenting discussion material.

CSCI 598. Internship. 1-6 Credits. (1-6 Ind; 6 cr max) On Demand
Max 6 cr. PREREQUISITE: Graduate standing, consent of instructor and approval of director of the School of Computing. An individualized assignment arranged with an agency, business or other organization to provide guided experience in the field.

CSCI 599. Graduate Consultation. 1-3 Credits. (1-3 Ind; 3 cr max) On Demand
Max 4 cr. PREREQUISITE: Graduate standing, consent of instructor and approval of director of the School of Computing. An individualized assignment arranged with an agency, business or other organization to provide guided experience in the field.

CSCI 690. Doctoral Thesis. 1-10 Credits. (1-10 Ind; max unlimited) F,S
PREREQUISITE: Doctoral standing.
Font Notice
This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Times was used instead of Adobe Garamond Pro.

The editor may contact Leeffrog for a draft with the correct fonts in place.