EGEN 102. Intro to Engineer Comp Apps. 3 Credits. (3 Lec) S
COREQUISITE: M 171Q. Effective methods for applying the computer to
common numerical problems encountered in chemical engineering. Chemical
engineering examples will provide a basis for more comprehensive problems
encountered in the other professional level courses.

EGEN 105. Introduction to General Engineering. 2 Credits. (1 Lec, 1 Lab) F,S
Provides students an opportunity to explore the fields of engineering, engineering
technology, and computer science. Other topics include engineering design, career
opportunities, professionalism, and ethics.

EGEN 115. Engineering Graphics. 1 Credit. (1 Lec) On Demand
Introductory course developing freehand sketching for engineering design graphics.
Skills will be developed for sketching and interpreting dimensioned multi-view
drawings, pictorials, sections, and assemblies.

EGEN 125CS. Tech, Innovation, and Society. 3 Credits. (3 Lec) F,S
This course explores the innovative engineering processes that connect the creative
elements of science and engineering with solving problems of everyday life. Topics
include understanding the role of creativity, public safety and ethics in creating
technological solutions. Case studies are investigated, including applying critical
thinking to exploring how innovation can help society.

EGEN 200. Designing Our Community. 1 Credit. (1 Sem) F,S
This course is designed to explore issues in engineering and college academics
for American Indian students and other under-represented students in Engineering
fields. The course will provide a learning community among students to ensure
success in achieving their professional goals.

PREREQUISITE: PHYS 220 or PHYS 240. COREQUISITE: M 273Q or M 283Q.
Equilibrium of particles and rigid bodies; static analysis of structures including
trusses, beams, frames and machines; coulomb friction; area and mass centroids,
moments and products of inertia.

PREREQUISITE: EGEN 201 or EGEN 221 and M 273Q or M 283Q. Kinematics,
kinetics, work-energy, and impulse-momentum for particles and rigid bodies.
Common Exams.

EGEN 203. Applied Mechanics. 3 Credits. (3 Lec) F,S,Su On Demand.
PREREQUISITE: PHYS 205 or PHYS 220 or PHYS 240. COREQUISITE:
M 166Q, M 172Q or M 182Q. Force systems in equilibrium and applications to
structural trusses and frames; section properties; distributed force systems; shear
and moment distributions in beams; basic particle dynamics.

EGEN 205. Mechanics of Materials. 3 Credits. (3 Lec) Su On Demand
PREREQUISITE: EGEN 201 or EGEN 221 and M 273Q or M 283Q. Stress and
strain, Hook’s Law, thermal strain, torsion, bending of beams, combined stress,
limit analysis, energy methods, virtual work, column theory.

EGEN 208. Applied Strength of Materials. 3 Credits. (3 Lec) Su On Demand
PREREQUISITE: PHYS 205 or PHYS 220 or PHYS 240. COREQUISITE:
M 166Q, M 172Q or M 182Q. Equilibrium and deformation of structural elements; concepts of stress
and strain and interrelationship; representation and transformation of combined stress states; axial, torsional and flexural stresses and deformation; column
buckling.

EGEN 221. Honors Statics. 3 Credits. (2 Lec, 1 Lab) On Demand
PREREQUISITE: PHYS 200 or PHYS 240 and good standing in University
Honors. COREQUISITE: M 273Q or M 283Q. Honors offering of engineering
statics, including topics dealing with equilibrium of particles and rigid bodies; static
analysis of structures including trusses, beams, frames and machines; coulomb
friction; area and mass centroids, moments and products of inertia.

EGEN 290R. Undergraduate Research. 1-6 Credits. (1-6 Ind; max unlimited)
F,S
Directed undergraduate research which may culminate in a written work or other
creative project. Course will address responsible conduct of research. May be
repeated.

EGEN 291. Special Topics. 1-4 Credits. (1-4 Lec; 12 cr max) On Demand
PREREQUISITE: None required but some may be determined necessary by each
offering department. Courses not required in any curriculum for which there is a
particular one-time need, or given on a trial basis to determine acceptability and
demand before requesting a regular course number.

EGEN 292. Independent Study. 1-3 Credits. (1-3 Ind; 6 cr max) On Demand
PREREQUISITE: Consent of instructor and approval of department head. Directed
research and study on an individual basis.

EGEN 310R. Multidisciplinary Engineering Design. 3 Credits. (3 Lec) F,S
PREREQUISITE: Junior standing in an Engineering curriculum or consent of
instructor. Introduces engineering students to topics such as design process, creative
design, project management, teamwork, and technical leadership while highlighting
the skills needed to work in a multi-disciplinary environment.

EGEN 324. Applied Thermodynamics. 3 Credits. (3 Lec) F,S
PREREQUISITE: PHYS 205 or PHYS 220. COREQUISITE: M 166Q or M 172Q. General treatment of the basic laws of thermodynamics and engineering
applications with introduction to heat transfer for curricula not requiring
EMEC 320/EMEC 321 series. Evening exams required.

EGEN 325. Engineering Economic Analysis. 3 Credits. (3 Lec) S
PREREQUISITE: Junior standing, M 171Q or M 165Q, or instructor approval.
Methods for comparing and evaluating capital investment alternatives. Concepts
include the time value of money, rates of return, cash flows, incremental analysis,
depreciation, influences of taxes, inflation and deflation, depreciation, replacement
analysis. Emphasis is placed upon evaluating various engineering alternatives.
Some open-ended design problems are included.

EGEN 330. Business Fundamentals for Technical Professionals. 3 Credits. (3 Lec) F,S,Su
PREREQUISITE: Junior Standing; and M 171Q or M 165Q. Basic business
topics for engineers and other technical professionals. Introduces key topics
related to financial statements, accounting practices, ethics, and evaluation of
capital investment alternatives including present worth, rate of return, and after-tax
analysis methods.

EGEN 331. Applied Mechanics of Fluids. 3 Credits. (3 Lec) F,S
PREREQUISITE: EGEN 208 or EGEN 205. Basic principles of fluid mechanics:
pressure measurement, forces on submerged areas, fluid flow through conduits,
open channel flow, forces caused by fluids in motion, pumps.

EGEN 335. Fluid Mechanics. 3 Credits. (3 Lec) F,S,Su On Demand.
PREREQUISITE: EGEN 202, EGEN 205. Introduction to modern fluid mechanics.

EGEN 350. Applied Engineering Data Analysis. 2 Credits. (2 Lec) F,S,Su
PREREQUISITE: M 166Q or M 172Q. An overview of data variability and applied
statistical analysis techniques for a broad range of engineering disciplines. Topics
include fundamentals of probability, essential probability distributions, hypothesis
testing, experimental design strategies, and regression in the context of engineering

EGEN 365. Introduction to Mechatronics. 3 Credits. (2 Lec, 1 Lab) S
PREREQUISITE: CSCI 111 or CSCI 112 or CSCI 127 or EMEC 303 (or consent
of instructor); EGEN 202 or ETME 340; EELE 203 or EELE 250. Course
introduces students to the design of mechatronic systems through integration of
electrical engineering, mechanical engineering, and computer science disciplines.
Topics include measurement and sensing, mechanical and electrical actuators,
hardware/software interfacing, basic control of mechatronic systems, and graphical
simulation software. A significant lab component culminates in an open-ended
team design project.

EGEN 415. Advanced Mechanics of Solids. 3 Credits. (3 Lec) F
PREREQUISITE: EGEN 205. Advanced topics in deformational mechanics of
materials; application to contemporary engineering problems. Computer
applications.

EGEN 420. Ice and Snow Mechanics. 3 Credits. (3 Lec) S
PREREQUISITE: EGEN 335 or ECVT 337. From an engineering perspective,
climate and snow are very complex materials. This course will assist students in
understanding and predicting the physical and thermo-mechanical processes of ice
and snow, their roles in the environment, and their implications for engineering. A
solid grasp of calculus, physics and engineering mechanics will be required to be
able to study these processes.

EGEN 435. Fluid Dynamics. 3 Credits. (3 Lec) S
PREREQUISITE: EGEN 335 ECVT 337. Equations governing steady and unsteady
fluid flow; applications to contemporary engineering problems. Computer
applications.
EGEN 488. Fundamentals of Engineering Exam. 0 Credits. (0 Ind) F.S
PREREQUISITE: Must be in final semester of program. Student participation in engineering program assessment. Requirement to complete the Fundamentals of Engineering (FE) examination or the Major Field Test in Computer Science (CS majors only). Students register for the FE exam through the NCEES website (https://ncees.org/) and then schedule a time to take the exam online. Documentation must be submitted to the Engineering Dean's Office prior to Finals Week.

EGEN 490R. Undergraduate Research. 1-4 Credits. (1 Ind; 12 cr max) F,S,Su
PREREQUISITE: Consent of instructor. Directed undergraduate research/creative activity which may culminate in a research paper, journal article, or undergraduate thesis. May be repeated.

EGEN 491. Special Topics. 1-4 Credits. (1-4 Lec; 12 cr max) On Demand
PREREQUISITE: Course prerequisites as determined for each offering. Courses not required in any curriculum for which there is a particular one-time need, or given on a trial basis to determine acceptability and demand before requesting a regular course number.

EGEN 492. Independent Study. 1-3 Credits. (1-3 Ind; 4 cr max)
PREREQUISITE: Consent of instructor, and approval of Department Head. Directed research and study on an individual basis.

EGEN 494. Engineering Peer Academic Leader Foundations. 1 Credit. (1 Lec) F,S
PREREQUISITE: Acceptance into the College of Engineering Peer Academic Leaders program. Students will learn skills to enhance their ability to interact with individuals from underrepresented or disadvantaged groups within the student population. Leadership potential will be developed through identification of implicit bias, gender schemas, and microaggressions and emphasize the student’s role in becoming an effective agent of change.

EGEN 498. Internship. 1-3 Credits. (1-3 Ind; 12 cr max)
PREREQUISITE: Junior standing, consent of instructor and approval of Department Head. An individualized assignment arranged with an agency, business, or other organization to provide guided experience in the field. Students may not take this course the semester they graduate.

EGEN 498Z. Internship. 1-3 Credits. (1-3 Ind; 12 cr max) On Demand
PREREQUISITE: Junior standing, consent of instructor and approval of Department Head. An individualized assignment arranged with an agency, business, or other organization to provide guided experience in the field. Students may not take this course the semester they graduate.

EGEN 505. Advanced Engineering Analysis. 3 Credits. (3 Lec) F
PREREQUISITE: One of the following: EMEC 425, EMEC 326, EGEN 335. Mathematical modeling of engineering systems, physical interpretation of ordinary and partial differential equations and methods of solution.

EGEN 506. Numerical Sol to Engr Problems. 3 Credits. (3 Lec) S
Numerical methods used to solve common engineering research problems. Solutions to nonlinear equations. Optimization methods.

EGEN 511. Engineering Methods for Teachers. 3 Credits. (2 Lec, 1 Rct) S
PREREQUISITE: A minimum of 2 years teaching experience. This course is designed to introduce the concepts of engineering technology design to equip teachers of science to meet and exceed emerging standards of teaching engineering process K-12. A balanced approach of engineering processes and educational pedagogy will be the cornerstones of the course.

EGEN 541. Thry Magnetic Resonance Imag I. 3 Credits. (3 Lec) F,S
PREREQUISITE: Graduate standing, or consent of instructor. Advanced topics in NMR phenomena including relaxation, diffusion, chemical shift, and magnetic susceptibility, as well as experimental aspects including phase cycling, magnetic field gradients, rf coil, tuning and matching and pulse sequence development will be covered.

EGEN 542. Thry Magnetic Resonance Img II. 3 Credits. (3 Lec) F,S
PREREQUISITE: Graduate standing. Consent of Instructor. Advanced topics in nuclear magnetic resonance phenomena focusing on molecular dynamics and pulse sequence development for measuring complex dynamics will be covered.
Font Notice

This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Times was used instead of Adobe Garamond Pro.

The editor may contact Leepfrog for a draft with the correct fonts in place.