PREREQUISITE: High school algebra. Improvement of photographic skills
PHSX 222. Physics II (w/ calculus). 4 Credits.
(3 Lec, 1 Lab) F
PHSX 103N. The Physics of How Things Work. 3 Credits.
(3 Lec) F
PREREQUISITE: High School Algebra. A practical approach to a broad array of
fundamental topics in physics for non-science majors taught by analyzing films
that are used and observed in everyday life. Classroom demonstrations will provide
the opportunity for in-class analysis, discussions, and hands-on activities. Physics
principals will be used to scrutinize issues such as energy and recycling from
economic and environmental perspectives. The latest technology in transportation,
electronics, and energy production will be analyzed. The connection between basic
research in physics and modern technology will be examined. Students will not
receive credit if they have passed PHSX 205. PHSX 220, or PHSX 240.

PHSX 200. Research Programs in Physics. 1 Credit.
(1 Lec) F
An introduction to some of the exciting ideas, developments, problems, and
experiments of modern day physics.

PHSX 201N. Physics by Inquiry. 3 Credits.
(3 Lab) F,S
An in-depth exploration of basic physics principles. Scientific model building
and proportional reasoning skills will be developed in the context of properties
of matter, observational astronomy, and DC electric circuits. For pre-service
elementary teachers.

PHSX 205. College Physics I. 4 Credits.
(3 Lec, 1 Lab) F,S,Su
PREREQUISITE: High school trigonometry or M 151Q. First semester of
sequence. Topics include kinematics and dynamics of linear and rotational motion;
work and energy; impulse and momentum; and fluids. Students will not receive
credit if they have passed PHSX 220 or PHSX 240. Common exams.

PHSX 207. College Physics II. 4 Credits.
(3 Lec, 1 Lab) F,S,Su
PREREQUISITE: PHSX 205 or PHSX 220. Second semester of sequence. Topics
include simple harmonic motion; electric forces and fields; dc electric circuits;
magnetic forces and fields; and magnetic induction and motors. Students will not
receive credit if they have passed PHSX 222 or PHSX 242. Common exams.

PHSX 220. Physics I (w/ calculus). 4 Credits.
(3 Lec, 1 Lab) F,S,Su
COREQUISITE: M 171Q or M 181Q. First semester of a three-semester sequence
primarily for engineering and physical science students. Covers topics in mechanics
(such as motion, Newton's laws, conservation laws, work, energy, systems of
particles, and rotational motion) and in mechanical waves (such as oscillations,
wave motion, sound, and superposition). Common exams.

PHSX 222. Physics II (w/ calculus). 4 Credits.
(3 Lec, 1 Lab) F,S,Su
PREREQUISITE: PHSX 220 or PHSX 240; M 171Q or M 181Q. COREQUISITE:
M 172Q or M 182Q. Covers topics in electricity and magnetism (such as Coulomb's
law, Gauss' law, electric fields, electric potential, dc circuits, magnetic fields,
Faraday's law, ac circuits, and Maxwell's equations) and optics (such as light,
geometrical optics, and physical optics). Common exams.

PHSX 224. Physics III. 4 Credits.
(3 Lec, 1 Lab) F,S
PREREQUISITE: PHSX 222 or PHSX 242; M 172Q or M 182Q. Covers topics in
thermodynamics (such as temperature, heat, laws of thermodynamics, and the
kinetic theory of gases) and modern physics (such as relativity; models of the
atom; quantum mechanics; and atomic, molecular, solid state, nuclear, and particle
physics).

PHSX 240. Honors Gen & Mod Phys I. 4 Credits.
(3 Lec, 1 Lab) S
COREQUISITE: M 171Q or M 181Q. Restricted to Honors students only. The
honors section of PHSX 220. The concepts are discussed in more depth and the
range of applications is greater. Common final only.

PHSX 242. Honors Gen & Mod Phys II. 4 Credits.
(3 Lec, 1 Lab) F
PREREQUISITE: PHSX 220 or PHSX 240; M 171Q or M 181Q. Restricted to
Honors students only. COREQUISITE: M 172Q or M 182Q. The honors section of
PHSX 222. The concepts are discussed in more depth and the range of applications
is greater.

PHSX 253. Physics of Photography. 2 Credits.
(2 Lec) F
PREREQUISITE: High school algebra. Improvement of photographic skills
through an understanding of the basic principles of photography. The nature of light
and color and the physical principles involved in the operation of a camera will be
presented. Unusual effects and recent developments will be discussed. Numerous
demonstrations, photographs, and slides will be used to illustrate the principles.

PHSX 261. Laboratory Electronics I. 3 Credits.
(1 Lec, 1 Lab) F
COREQUISITES: PHSX 222 or PHSX 242. Laboratory electronic measurements
and analysis, and design of basic linear circuits.

PHSX 262. Laboratory Electronics II. 2 Credits.
(1 Lec, 1 Lab) S
PREREQUISITE: PHSX 261. Analysis and design of basic digital circuits and
advanced laboratory electronic measurements.

PHSX 290R. Undergraduate Research. 1-8 Credits.
(1 Ind; 8 cr max) F,S,Su
PREREQUISITE: Consent of instructor and approval of department head. Directed
undergraduate research. Course will address responsible conduct of research.

PHSX 291. Special Topics. 1-4 Credits.
(1-2 Lab; 12 cr max) On Demand
Max 12 cr. PREREQUISITE: None required but some may be determined
necessary by each offering department. Courses not required in any curriculum
for which there is a particular one time need, or given on a trial basis to determine
acceptability and demand before requesting a regular course number.

PHSX 292. Independent Study. 1-3 Credits.
(1 Ind; 6 cr max) On Demand
Max 6 cr. PREREQUISITE: Consent of instructor and approval of department
head. Directed study on an individual basis.

PHSX 301. Intro Theoretical Physics. 3 Credits.
(3 Lec) S
PREREQUISITE: M 273Q or M283Q; PHSX 222 or PHSX 242. COREQUISITE:
M 274 or M 284. Mathematical methods essential to the practice of theoretical
physics, such as matrices, vector calculus, differential equations, complex
variables, and Fourier series, with applications to examples from mechanics and
electromagnetism.

PHSX 305RN. Art & Science of Holography. 3 Credits.
(2 Lec, 1 Lab) S
PREREQUISITE: Junior standing. M 151Q or equivalent M Placement Test.
Beginner's course on creating holograms. Pictorial and geometric interpretations of
lasers, interference, coherence, film, and holography enable students with limited
science and M backgrounds to create their own holographic masterpieces. Lab
techniques and documenting the creative process are emphasized.

PHSX 320. Classical Mechanics. 4 Credits.
(4 Lec) F
PREREQUISITE: PHSX 301; PHSX 220 or PHSX 240. Principles of Newtonian,
Lagrangian, and Hamiltonian mechanics including single particle motion, systems
of particles, rigid body motion, moving coordinate systems, and small oscillations.

PHSX 331. Meth of Computational Physics. 1 Credit.
(1 Lec) F
PREREQUISITE: PHSX 301. Introduction to the use of computational methods
in physics. Emphasis will be placed on common methods of casting problems into
forms amenable to numerical solution and for displaying numerical results.

PHSX 343. Modern Physics. 3 Credits.
(3 Lec) F
PREREQUISITE: PHSX 224, PHSX 301, and M 284 or M 274. Waves in
classical physics and quantum mechanics: complex representation, amplitude
mechanics, and interference; Special relativity: postulates, Lorentz transformations,
applications in nuclear and particle physics; Quantum mechanics: interpretation
of key experiments, Schrodinger equation, particles in potentials, spin, the atom;
Introduction to nuclear and particle physics.

PHSX 401. Physics by Inquiry I. 3 Credits.
(3 Lab) Su
PREREQUISITE: Teacher Certification. An in-depth and hands-on exploration
of basic physics principles. Scientific model building and proportional reasoning
skills will be developed in the context of dc electrics, one and two dimensional
kinematics, and dynamics. For middle school and high school science teachers.

PHSX 402. Physics by Inquiry II. 3 Credits.
(3 Lab) Su
PREREQUISITE: PHSX 401. An in-depth and hands-on exploration of basic
physics principles. Scientific model building and proportional reasoning skills
will be developed in the context of dc electrics, one and two dimensional
kinematics, and dynamics. For middle school and high school science teachers.

PHSX 403. Physics by Inquiry III. 3 Credits.
(3 Lab) Su
PHSX 403 is a continuation of the PHSX 401 experience, but it may also be taken
concurrently with PHSX 401. The course will begin with a careful investigation of
geometrical optics, leading to an understanding of pinhole cameras, lenses, and prisms. This will be followed by an exploration of magnetic interactions and
magnetic materials.

PHSX 405. Special Relativity Online. 3 Credits.
(3 Ret) On Demand
PREREQUISITE: PHSX 222, M 172Q or M 182Q, Bachelor's degree, and one year
teaching experience. This online course addresses the question: In what ways does
nature behave differently at high relative speeds than at low speeds? Designed for
practicing high school physics teachers. Assignments and discussions use electronic
computer conferencing and interactive visual software.
PHSX 423. Electricity and Magnetism I. 3 Credits. (3 Lec) S
PREREQUISITE: (PHSX 301 or M 348; PHSX 222 or PHSX 242) or Graduate Standing. Electrostatic fields, dielectric materials, magnetic fields, magnetic materials, and Maxwell's equations.

PHSX 425. Electricity and Magnetism II. 3 Credits. (3 Lec) F
PREREQUISITE: (PHSX 343 and PHSX 423) or Graduate standing. Propagation of electromagnetic waves, radiation, and general wave phenomena.

PHSX 427. Advanced Optics. 3 Credits. (3 Lec) S alternate years, to be offered even years.
PREREQUISITE: (PHSX 224; M 274 or M 284) or Graduate standing. Emphasis is on new developments in optics triggered by the laser. Provides a good foundation in wave optics, nonlinear optics, integrated optics, and spectroscopy.

PHSX 435. Astrophysics. 3 Credits. (3 Lec) S alternate years, to be offered even years.
PREREQUISITE: (PHSX 320; PHSX 343; PHSX 222 or PHSX 242) or Graduate Standing. A survey covering basic problems in modern astrophysics such as stellar structure and evolution, solar physics, compact objects, quasars, and cosmology.

PHSX 437. Laser Applications. 3 Credits. (3 Lec) S alternate years, to be offered odd years PREREQUISITE: PHSX 222 or Graduate standing. A survey of laser types and properties and applications for scientists and engineers who wish to use lasers in research or technology. Many demonstrations will be used to illustrate the principles.

PHSX 441. Solid State Physics. 3 Credits. (3 Lec) F alternate years, to be offered odd years PREREQUISITE: PHSX 224 or Graduate standing. A treatment of the classification and electronic structure of solids. Properties of conductors, superconductors, insulators, and semiconductors will be discussed. This course is strongly recommended for students intending to study physics in graduate school.

PHSX 442. Novel Mat for Physics/Engineer. 3 Credits. (3 Lec) S alternate years, to be offered even years.
PREREQUISITE: Knowledge of introductory solid state physics; PHSX 441 or consent of instructor. Provides basic physical knowledge of advanced natural/artificial materials; ferroelectrics, superconductors, nanotubes, superlattices, photonics materials, materials with giant magnetoresistance and negative susceptibilities, molecular magnets, and biomaterials.

PHSX 444. Advanced Physics Lab. 4 Credits. (4 Lab; 8 cr max) F,S Max 8 cr (May not duplicate F or S semesters. 4 cr F, 4 cr S only) PREREQUISITE: PHSX 262 and PHSX 343. COREQUISITE: PHSX 461. Introduction to methods, instrumentation, and data acquisition techniques used in modern physics research. Different experiments are offered in the two semesters. For students desiring a strong experimental exposure, taking both courses is recommended. Experiments in the fall semester are typically in solid state physics and particle spectroscopy. Co-convened with PHSX 516.

PHSX 446. Thermodynamics & Stat Mech. 3 Credits. (3 Lec) S
PREREQUISITE: PHSX 301 or Graduate standing. Statistical physics and thermodynamics and their applications to physical phenomena. This course is strongly recommended for students intending to study physics in graduate school.

PHSX 451. Elementary Particle Physics. 3 Credits. (3 Lec) S
PREREQUISITE: PHSX 343 or Graduate standing. A survey of elementary particle physics, beginning with an historical viewpoint and leading up to today's remarkably successful "Standard Model" of quarks, leptons, and gauge bosons.

PHSX 461. Quantum Mechanics I. 3 Credits. (3 Lec) F
PREREQUISITE: PHSX 343 and PHSX 320 or Graduate Standing. The wave function, the Schrödinger equation in 1-D, formalism and Dirac notation, and 3-D effects including the hydrogen atom.

PHSX 462. Quantum Mechanics II. 3 Credits. (3 Lec) S
PREREQUISITE: PHSX 461 or Graduate standing. Identical particles, time independent perturbation theory, time dependent perturbation theory, and the variational principle.

PHSX 490R. Undergraduate Research. 1-6 Credits. (1 Ind; 12 cr max) F,S,Su Max 6 cr. PREREQUISITE: Junior standing and signed consent of instructor/research advisor and academic advisor. Directed undergraduate research/creative activity, which may culminate in a research paper, journal article, or undergraduate thesis. Course will address responsible conduct of research. May be repeated.

PHSX 491. Special Topics. 1-4 Credits. (1-4 Lec; 12 cr max) On Demand Max 12 cr. PREREQUISITE: Course prerequisites as determined for each offering. Courses not required in any curriculum for which there is a particular one-time need, or given on a trial basis to determine acceptability and demand before requesting a regular course number.

PHSX 492. Independent Study. 1-3 Credits. (1 Ind; 6 cr max) On Demand Max 6 cr. PREREQUISITE: Junior standing, consent of instructor and approval of department head. Directed study on an individual basis.

PHSX 494. Seminar/Workshop. 1 Credit. (1 Sem; 4 cr max) On Demand Max 4 cr. PREREQUISITE: Junior standing and as determined for each offering. Topics offered at the upper division level which are not covered in regular courses. Students participate in preparing and presenting discussion material. Co-convened with PHSX 594.

PHSX 499. Senior Capstone Seminar. 1 Credit. (1 Sem) S
PREREQUISITE: Senior standing, completion of a senior project, and 2 credits of PHSX 490R. Senior capstone course. Participation in this course requires the completion of a senior project that integrates the student's knowledge and skills acquired during the undergraduate curriculum. Students will be required to complete: i) an APS-style abstract, ii) an APS-style 10-minute oral presentation, iii) a poster session, and iv) a written research report, based on their research/creative activity.

PHSX 499R. Senior Capstone Seminar. 1 Credit. (1 Sem) S
PREREQUISITE: Senior standing, completion of a senior project, and 2 credits of PHSX 490R. Senior capstone course. Participation in this course requires the completion of a senior project that integrates the student's knowledge and skills acquired during the undergraduate curriculum. Students will be required to complete: i) an APS-style abstract, ii) an APS-style 10-minute oral presentation, iii) a poster session, and iv) a written research report, based on their research/creative activity.

PHSX 501. Advanced Classical Mechanics. 3 Credits. (3 Lec) F

PHSX 506. Quantum Mechanics I. 3 Credits. (3 Lec) F

PHSX 507. Quantum Mechanics II. 3 Credits. (3 Lec) S

PHSX 511. Astronomy for Teachers. 3 Credits. (3 Rct) F,S,Su
PREREQUISITE:Graduate standing; Currently certified middle and high school teachers with one year of teaching experience. This is an online, distance education course primarily intended for science educators. Topics include: the laws of gravity and orbital dynamics, a survey of the solar system, stars and stellar evolution, galaxies, and Big Bang cosmology.

PHSX 512. General Relativity Online. 3 Credits. (3 Lec) S alternate years, to be offered even years.
PREREQUISITE: PHSX 222 or PHSX 242; M 182Q; PHSX 405; Bachelor's degree and one year teaching experience. This online course addresses the theory of general relativity, which underlies our understanding of gravity and the large-scale structure of the cosmos. Designed for practicing high school physics teachers. Assignments and discussions use electronic computer conferencing and simulation software.

PHSX 513. Quantum Mechanics Online. 3 Credits. (3 Lec) S alternate years, to be offered even years.
PREREQUISITE: Graduate standing; Currently certified high school teachers with one year of teaching experience; an introductory physics course; and a working knowledge of elementary differential and integral calculus. This online course addresses the key ideas behind quantum mechanical observations and devices, including the fundamental behavior of electrons and photons. Designed for practicing high school physics teachers. Assignments and discussions use electronic computer conferencing and simulation software.
PHSX 554. Comparative Planetology Online. 3 Credits. (3 Lec) S
PREREQUISITE: Bachelor's degree, professional teaching certificate, and at least one year of K-12 teaching experience. Because the use of technology is integral to the course, some familiarity with using technology in the classroom is required. Establishing a Virtual Presence in the Solar System has been developed and tested as an Internet-delivered course for off-campus students. Its audience consists of practicing elementary and secondary teachers who have experience in teaching general science but have little, if any, formal course work in astronomy. Its goal is to help graduate-level teachers learn solar system astronomy concepts to integrate the new National Science Education Standards and NASA resources into existing instructional strategies. Course participants learn advanced solar system concepts, utilize WWW-resources, communicate with research scientists using the Internet, analyze digital images using image processing software, and organize materials for use in K-12 classroom environments.

PHSX 555. Advanced Topics In Physics. 3 Credits. (3 Lec; 6 cr max) On Demand
Max 6 cr. PREREQUISITE: Graduate standing. Topics in astrophysics, condensed matter physics, optics, mathematical physics, or particle physics are presented as needed to supplement the curriculum.

PHSX 556. Experimental Physics. 3 Credits. (3 Lab; 6 cr max) F,S
Max 6 cr. PREREQUISITE: (PHSX 261, PHSX 423, and PHSX 461) or graduate standing. Experiments chosen from laser optics and atomic, solid-state, and nuclear physics are carried out in depth to introduce the graduate student to methods, instrumentation, and data acquisition techniques useful for experimental thesis projects. Co-convened with PHSX 444.

PHSX 559. Electromagnetic Theory I. 3 Credits. (3 Lec) S
PREREQUISITE: PHSX 425 or graduate standing. Electro- and magnetostatics, conservation laws and covariance of Maxwell's equations, and dynamics of relativistic particles and fields.

PHSX 560. Astrophysics. 3 Credits. (3 Lec) F, alternate years, to be offered even years.
PREREQUISITE: PHSX 425, PHSX 462, PHSX 446, and PHYS 435, or graduate standing. The purpose of this course is to prepare graduate students for thesis-level research in astrophysics, solar physics or related fields. Topics covered include: fluid mechanics, hydrodynamics, plasma physics, radiation processes and stability of equilibrium states.

PHSX 565. Astrophysical Plasma Physics. 3 Credits. (3 Lec) F alternate years, to be offered odd years.
PREREQUISITE: PHSX 520. An introduction to the physics of fluids and plasma relevant to astrophysical plasmas such as the solar corona. Topics covered include: magnetostatics, one-fluid (MHD) and two-fluid approaches, linear waves and instabilities, shocks, transonic flows and collisional effects.

PHSX 566. Mathematical Physics I. 3 Credits. (3 Lec) F
PREREQUISITE: M 349, M 472, and PHSX 320 or graduate standing. Mathematical methods which find application in physics. Differential equations, contour integration, special functions, integral transforms, boundary value problems, and Green's functions.

PHSX 567. Mathematical Physics II. 3 Credits. (3 Lec) S alternate years, to be offered even years.
PREREQUISITE: PHSX 566. Theory of computational techniques, and applications such as numerical integration, differential equations, Monte Carlo methods, and fast Fourier transforms.

PHSX 582. Astrobiology for Teachers Online. 3 Credits. (3 Lec) F,S
PREREQUISITE: (1) a bachelor's degree, including college level biology and college level physics or astronomy (2) two years of experience teaching science (3) must be currently certified and teaching science at the middle or high school level. Astrobiology is the study of the origin, evolution, distribution, and destiny of life in the universe. It defines itself as an interdisciplinary science at the intersection of physics, astronomy, biology, geology, and mathematics, to discover where and under what conditions life can arise and exist in the Universe. The course topics will cover the discovery of planetary systems around other stars, the nature of habitable zones around distant stars, the existence of life in extreme environments. These concepts will serve as a foundation to study possible extraterrestrial ecosystems on planets and moons like Mars and Europa.

PHSX 589. Graduate Consultation. 3 Credits. (3 Ind) F,S,Su
PREREQUISITE: Master's standing and approval of the Dean of Graduate Studies. This course may be used only by students who have completed all of their coursework (and thesis, if on a thesis plan) but who need additional faculty or staff time or help.

PHSX 590. Master's Thesis. 1-10 Credits. (1 Ind; max unlimited) F,S,Su
PREREQUISITE: Master's standing and approval of the Dean of Graduate Studies. This course may be used only by students who have completed all of their coursework (and thesis, if on a thesis plan) but who need additional faculty or staff time or help.

PHSX 591. Special Topics. 1-4 Credits. (1 Lec; 12 cr max) On Demand
Max 12 cr. PREREQUISITE: Upper division courses and others as determined for each offering. Courses not required in any curriculum for which there is a particular one time need, or given on a trial basis to determine acceptability and demand before requesting a regular course number.

PHSX 592. Independent Study. 1-3 Credits. (1-3 Ind; 6 cr max) On Demand
Max 6 cr. PREREQUISITE: Graduate standing, consent of instructor, approval of department head and Dean of Graduate Studies. Directed research and study on an individual basis.

PHSX 594. Seminar. 1 Credit. (1 Sem; 8 cr max) On Demand
Max 8 cr. PREREQUISITE: Graduate standing or seniors by petition. Course prerequisites as determined for each offering. Topics offered at the graduate level which are not covered in regular courses. Students participate in preparing and presenting discussion material.

PHSX 689. Doctoral Reading & Research. 3-5 Credits. (3 Ind; 15 cr max) On Demand
Max 15 cr. PREREQUISITE: Doctoral standing. This course may be used by doctoral students who are reading research publications in the field in preparation for beginning doctoral thesis research.

PHSX 690. Doctoral Thesis. 1-10 Credits. (1 Ind; max unlimited) F,S,Su
Max credits unlimited. PREREQUISITE: Doctoral standing.
Font Notice

This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Times was used instead of Adobe Garamond Pro.

The editor may contact Leepfrog for a draft with the correct fonts in place.