Ph.D. in Materials Science

Participating Departments:
Chemistry and Biochemistry, Physics, Chemical and Biological Engineering, Mechanical and Industrial Engineering, and Electrical and Computing Engineering.

Information Contact
Diane Dorgan
Interdisciplinary Graduate Programs Manager

Link to home page for General information (http://www.mtmatsci.org/)

Overview
MSU is part of a collaborative Ph.D. program with MTech in materials science (MatSci). At MSU, the Ph.D program involves multiple departments, faculty, courses, and research infrastructure. Research specialties are focused in biomaterials; electronic, photonic, and magnetic materials; materials for energy storage, conversion, and conservation; and materials synthesis, processing, and fabrication. The curriculum integrates a broad range of physical science and engineering disciplines with an even broader range of applications: from health and medicine to nanotechnology to energy, environment, and natural resources. Each student will complete original, independent research culminating in a dissertation.

Admission
To enter the Ph.D. program, the student must have earned a B.S. or a B.A degree (or equivalent) in materials science, materials engineering, physics, chemistry, metallurgy, or a related science or engineering field. The student's academic record must provide evidence of a strong background in the fundamentals of science and/or engineering principles. To learn more on applying to Materials Sciences, review this webpage: http://www.montana.edu/materials/.

Degree Requirements and Curriculum
The MatSci Ph.D. curriculum is designed to be flexible, but still provide students with an exceptionally strong and broad understanding of the theory, experimental techniques, current challenges, and societal/economic impacts of materials science and engineering. All students in the program—regardless of specialty—will understand how classes of materials derive their properties from the atomic to the macroscopic level and be familiar with the growing set of materials fabrication, assembly, processing, and characterization tools and techniques. Furthermore, students will be aware of and committed to the professional and ethical standards of the field. Students are also expected to become aware of the economic, societal, and other broader impacts of materials and materials research. Through their dissertation research, students will demonstrate that they can conceive, plan, design, conduct, analyze, defend, publish, and communicate original and creative research that advances understanding in an area important to MatSci.

The MatSci Ph.D. will require a minimum of 60 semester credits beyond the bachelor's degree. Of the 60 credits, at least 18 credits must be obtained for dissertation research, and at least 32 credits must be earned for coursework.

In addition to the core curriculum, each student must earn at least 12 credits of electives within or related to the chosen specialty. Typically, this coursework would be completed by the end of the student's second year. Additional elective courses intended to provide a student with specialized expertise and/or skills relevant to their dissertation research may be recommended by the individual student's advisor and committee.

Other Requirements
Other requirements include the qualifying exam, the candidacy exam, the dissertation, participation in the program's annual summer symposium, annual meetings with a student's advisory committee, and an optional internship.

Core Courses
- MTSI 501 Material Structure and Bonding
- MTSI 502 Adv Materials Science II
- MTSI 511 Thermodynamics of Materials
- MTSI 512 Kinetics Phase Transformations
- MTSI 551 Adv Materials Characterization/ MTSI 552 Adv Material Character II
- MTSI 594 Seminar
- MTSI 690 DISSERTATION RESEARCH

ELECTIVES
- MTSC 580 SPECIAL TOPICS
- MTSC 589 COLLABORATIVE PROJECT

Other Electives
Elective courses will be available, allowing students to deepen their understanding and research skills in the program's focus areas:

1. biomaterials;
2. materials for energy storage, conversion, and conservation;
3. electronic, magnetic, and photonic materials; and
4. materials synthesis, processing, and fabrication.

Some electives will be developed specifically for the MatSci Ph.D. program, others would be graduate courses from other related graduate programs at the three campuses. Courses in mathematics, statistics, and numerical modeling would be recommended for students with special interests in theory and simulation.