Mechanical Engineering

The specific mission of the undergraduate Mechanical Engineering (ME) program is to prepare students for successful mechanical engineering careers, responsible citizenship, and continued intellectual growth. The goal of the program is to produce graduates strong in fundamentals, applications, design, communication, and professional responsibility. The Montana State University Mechanical Engineering Program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org (http://www.abet.org/).

The educational objectives for the Mechanical Engineering program are to prepare graduates who:

1. Undertake professional careers
2. Solve problems using engineering skills and methods
3. Regularly communicate using modern tools
4. Work productively in a team environment
5. Acquire new knowledge and skills

The undergraduate Mechanical Engineering program is principally oriented toward career preparation, providing students with the engineering and technical education appropriate to the challenges presented by today’s technologically complex and difficult problems. The coursework in mechanical engineering provides four years of study in mathematics, basic sciences, university core subjects, and engineering topics. The overall curriculum provides an integrated educational experience directed toward the development of an ability to apply pertinent knowledge to the identification and solution of practical problems in mechanical engineering.

The profession of mechanical engineering is very broad, with practitioners employed in most areas of technological and industrial management endeavor. Examples of industrial employers which require mechanical engineering background are: process industries including pulp and paper, steel, aluminum, food, petroleum, chemicals and others; manufacturing industries including highway vehicles, instruments, airplanes, rockets and engines, toys, agricultural machinery, and many others; power plants including steam, nuclear, and hydroelectric plants; federal laboratories performing a wide variety of defense and non-defense related engineering design, analysis, and experimental work; and a wide variety of consulting work including heating, ventilating, and air conditioning system design, and forensic engineering. This brief sample gives a view of the wide spectrum of employment possibilities in mechanical engineering.

It is the mechanical engineer’s responsibility and challenge to conceive, plan, design, and perform analysis and testing related to devices, machines, and systems used by or manufactured by the employer. This work may include liaison with other engineers, engineering technologists, technicians, outside vendors, and departments within the company. Areas of responsibility following design and prototype testing may include direction of a manufacturing line.

It should be evident that career opportunities abound within this very wide array of employers and engineering activities. The job market for engineers often follows the nation’s economy in general. In spite of these natural fluctuations, however, it is expected that our nation will always depend on uses of technology for creating an improved standard of living and a more efficient industrial base to maintain and enhance international competitiveness. Therefore, we can expect that mechanical engineering graduates will have excellent employment opportunities.

Course requirements include mathematics, basic sciences (physics and chemistry), engineering design; arts, diversity, humanities and social sciences; and at least one year of engineering science. The program also includes engineering graphics, statistics, computer application, solid mechanics, materials science, manufacturing processes, thermodynamics, heat transfer, fluid mechanics, electronics, and design of structural, mechanical, and energy systems. Computing and computer applications are stressed throughout the curriculum. The program culminates with a capstone design experience in which the student is involved in a team that must create a solution to a real-world engineering design problem, and develop a working prototype. Often times these teams are multidisciplinary.

Graduate Program

Students who have completed a Bachelor of Science degree in engineering or closely related discipline may take graduate work leading to the Master of Science in Mechanical Engineering, Master of Engineering in Mechanical Engineering, or Doctor of Philosophy in Engineering with Mechanical Engineering or Engineering Mechanics options typical. Advanced degrees are necessary for university teaching and are increasingly important in industry, particularly in the areas of new product development and research. Further details may be found in the Graduate Catalog.

Freshman Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMX 111US</td>
<td>Introduction to Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>M 171Q</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 100</td>
<td>Introduction to Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>EMEC 105</td>
<td>CAE I-Engineering Graphics Communications</td>
<td>2</td>
</tr>
<tr>
<td>PHSX 220</td>
<td>Physics I with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>University Core Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHMY 141</td>
<td>College Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 101W</td>
<td>College Writing I</td>
<td>3</td>
</tr>
<tr>
<td>M 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHSX 222</td>
<td>Physics II with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>University Core Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGEN 201</td>
<td>Engineering Mechanics-Statics</td>
<td>3</td>
</tr>
<tr>
<td>EMEC 203</td>
<td>CAE II-Mechanical Engineering Computations</td>
<td>2</td>
</tr>
<tr>
<td>EMEC 250</td>
<td>Mechanical Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>EMAT 252</td>
<td>Materials Struct and Prop Lab</td>
<td>1</td>
</tr>
<tr>
<td>M 273</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>University Core Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EGEN 202</td>
<td>Engineering Mechanics -- Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EGEN 205</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>M 274</td>
<td>Introduction to Differential Equation</td>
<td>4</td>
</tr>
<tr>
<td>ETME 215</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>ETME 216</td>
<td>Manufacturing Process Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGEN 335</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>EMEC 303</td>
<td>CAE III-- Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EMEC 320</td>
<td>Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

University Core Electives

CLS 101US - Knowledge and Community
COMX 111US - Introduction to Public Speaking
M 171Q - Calculus I
EMEC 341 - Adv Mechanics of Materials
EMEC 350 - Applied Engineering Data Analysis
EMEC 321 - Thermodynamics II
EMEC 326 - Fundamentals of Heat Transfer
EMEC 342 - Mechanical Component Design
EMEC 360 - Measurement & Instrumentation
EMEC 361 - Measurement & Instrument Lab
EMEC 310R - Multidisciplinary Engineering Design
Year Total: 14 16

Senior Year
EGEN 330 - Business Fundamentals for Technical Professionals 3
EMEC 445 - Mechanical Vibrations 3
EMEC 489R - Mechanical Engineering Design Capstone I 2
Professional Electives 6
EMEC 499R - Mechanical Engineering Design Capstone II 3
EGEN 488 - Fundamentals of Engineering Exam 0
Professional Electives 6
Professional Elective - Take one of the following: 3
EMEC 405 - Finite Element Analysis
EMEC 436 - Computational Fluid Dynamics 3
University Core Electives 3
Year Total: 14 15

Total Program Credits: 128

Approved ME Professional Elective Courses

BCH 441 Biochemistry of Macromolecules 3
BIOB 425 Adv Cell & Molecular Biology * 3
EBIO 461 Principles of Biomedical Engineering 3
ECHM 424 Transport Analysis 3
EELE 321 Introduction To Feedback Controls 3
EELE 371 Microprocess HW and SW Systems * 4
EGEN 415 Advanced Mechanics of Solids 3
EGEN 435 Fluid Dynamics 3
EIND 413 Work Design and Analysis 3
EIND 410 Interaction Design 3
EIND 411 & Interaction Design Project
EIND 413 Ergonomics & Human Factors Engineering 3
EIND 425 Technology Entrepreneurship 3
EIND 434 Project Management for Engineers 3
EMAT 350 Engineering Materials 3
EMAT 460 Polymeric Materials 3
EMAT 461 Friction and Wear of Materials 3
EMAT 462 Manufacturing of Composites 3
EMAT 463 Composite Materials 3
EMAT 464 Biomedical Materials Engineering 3
EMEC 403 CAE IV--Design Integration 3
EMEC 405 Finite Element Analysis 3
EMEC 424 Cellular Mechanotransduction 3
EMEC 425 Advanced Thermal Systems 3
EMEC 426 Thermodynamics of Propulsion Systems 3
EMEC 430 Introduction to Combustion 3
EMEC 436 Computational Fluid Dynamics 3
EMEC 440 Biomechanics of Human Movement 3
EMEC 444 Mech Behavior of Materials 3
EMEC 447 Aircraft Structures 4
EMEC 462 System Dynamics and Control 3
EMEC 465 Bio-inspired Engineering 3
EMEC 466 Acoustics, Engineering and the Environment 3
EMEC 467 Micro-Electromechanical Systems 3
EMEC 490R Undergraduate Research 1-3
EMEC 492 Independent Study 1-3
EMEC 498 Internship 1-3
ETME 410 Computerized Numerical Control and Computer-aided Manufacturing Technology 3
ETME 415 Design for Manufacturing and Tooling 3
ETME 422 Principles of HVAC I 3
ETME 430 Fluid Power Systems Design 3
ETME 470 Renewable Energy Applications 3
M 349 Techniques of Applied Mathematics II 3
M 441 Numerical Linear Algebra & Optimization * 3
M 442 Numerical Solution of Differential Equations 3
M 450 Applied Mathematics I 3
M 451 Applied Mathematics II * 3
M 472 Introduction to Complex Analysis 3

1 Students exempt from MSU writing requirement must still complete a 3 credit writing intensive course. See MIE Writing Policy (http://www.montana.edu/mie/students/advising_forms/documents/Advising_Forms_All_Terms/Writing%20Exemption%20Policy%206-30-15.pdf).

2 See ME PE Policy (http://www.montana.edu/mie/students/mechanical_engineering_professional_electives_policy.html) for details.

* The courses have prerequisites outside of the normal ME prerequisite structure

Students cannot enroll in any course without successfully completing prerequisites and the co-requisite requirements to those prerequisite courses.

A minimum of 128 credits is required for graduation; 42 of these credits must be in courses numbered 300 and above.