Mechanical Engineering

The specific mission of the undergraduate Mechanical Engineering (ME) program is to prepare students for successful mechanical engineering careers, responsible citizenship, and continued intellectual growth. The goal of the program is to produce graduates strong in fundamentals, applications, design, communication, and professional responsibility. The ME undergraduate program is accredited by the Engineering Accreditation Commission of ABET, 415 N. Charles Street, Baltimore, MD, 21201, or by telephone: (410) 347-7700. The educational objectives for the ME program follow.

Mechanical Engineering graduates will:

  1. Undertake professional careers
  2. Solve problems using engineering skills and methods
  3. Regularly communicate using modern tools
  4. Work productively in a team environment
  5. Acquire new knowledge and skills

The undergraduate Mechanical Engineering program is principally oriented toward career preparation, providing students with the engineering and technical education appropriate to the challenges presented by today's technologically complex and difficult problems. The coursework in mechanical engineering provides four years of study in mathematics, basic sciences, university core subjects, and engineering topics. The overall curriculum provides an integrated educational experience directed toward the development of an ability to apply pertinent knowledge to the identification and solution of practical problems in mechanical engineering.

The profession of mechanical engineering is very broad, with practitioners employed in most areas of technological and industrial management endeavor. Examples of industrial employers which require mechanical engineering background are: process industries including pulp and paper, steel, aluminum, food, petroleum, chemicals and others; manufacturing industries including highway vehicles, instruments, airplanes, rockets and engines, toys, agricultural machinery, and many others; power plants including steam, nuclear, and hydroelectric plants; federal laboratories performing a wide variety of defense and non-defense related engineering design, analysis, and experimental work; and a wide variety of consulting work including heating, ventilating, and air conditioning system design, and forensic engineering. This brief sample gives a view of the wide spectrum of employment possibilities in mechanical engineering.

It is the mechanical engineer's responsibility and challenge to conceive, plan, design, and perform analysis and testing related to devices, machines, and systems used by or manufactured by the employer. This work may include liaison with other engineers, engineering technologists, technicians, outside vendors, and departments within the company. Areas of responsibility following design and prototype testing may include direction of a manufacturing line.

It should be evident that career opportunities abound within this very wide array of employers and engineering activities. The job market for engineers often follows the nation's economy in general. In spite of these natural fluctuations, however, it is expected that our nation will always depend on uses of technology for creating an improved standard of living and a more efficient industrial base to maintain and enhance international competitiveness. Therefore, we can expect that mechanical engineering graduates will have excellent employment opportunities.

Course requirements include mathematics, basic sciences (physics and chemistry), engineering design; arts, diversity, humanities and social sciences; and at least one year of engineering science. The program also includes engineering graphics, statistics, computer application, solid mechanics, materials science, manufacturing processes, thermodynamics, heat transfer, fluid mechanics, electronics, and design of structural, mechanical, and energy systems. Computing and computer applications are stressed throughout the curriculum. The program culminates with a capstone design experience in which the student is involved in a team that must create a solution to a real-world engineering design problem, and develop a working prototype. Often times these teams are multidisciplinary.

Graduate Program

Students who have completed a Bachelor of Science degree in engineering or closely related discipline may take graduate work leading to the Master of Science in Mechanical Engineering, Master of Engineering in Mechanical Engineering, or Doctor of Philosophy in Engineering with Mechanical Engineering or Engineering Mechanics options typical. Advanced degrees are necessary for university teaching and are increasingly important in industry, particularly in the areas of new product development and research. Further details may be found in the Graduate Catalog.

Freshman YearCredits
FallSpring
CLS 101US - Knowledge and Community
or COM 110US - Public Communication
3  
M 171Q - Calculus I4  
EMEC 100 - Introduction to Mechanical Engineering1  
EMEC 103 - CAE I-Engineering Graphics Communications2  
University Core Electives6  
CHMY 141 - College Chemistry I  4
WRIT 101W - College Writing I  3
M 172Q - Calculus II  4
PHSX 220 - Physics I (w/ calculus)  4
University Core Electives  3
Year Total: 16 18
Sophomore YearCredits
FallSpring
EMAT 251 - Materials Structures and Prop3  
EGEN 201 - Engineering Mechanics--Statics3  
M 273Q - Multivariable Calculus4  
EMEC 203 - CAE II-Mechanical Engineering Computations2  
EMAT 252 - Materials Struct and Prop Lab1  
PHSX 222 - Physics II (w/ calculus)4  
EGEN 202 - Engineering Mech--Dynamics  3
EGEN 205 - Mechanics of Mtls (equiv 305)  3
M 274 - Introduction to Differential Equation  4
ETME 215 - Manufacturing Processes  3
ETME 217 - Manufacturing Process Laboratory - Mechanical Engineering  1
EELE 250 - Circuits, Devices and Motors  4
Year Total: 17 18
Junior YearCredits
FallSpring
EGEN 335 - Fluid Mechanics3  
EMEC 303 - CAE III-- Systems Analysis3  
EMEC 320 - Thermodynamics I3  
EMEC 341 - Adv Mechanics of Materials3  
EGEN 350 - Applied Engr Data Analysis2  
EMEC 321 - Thermodynamics II  3
EMEC 326 - Fundamentals of Heat Transfer  3
EMEC 342 - Mech Component Design  3
EMEC 360 - Measurement & Instrumentation  3
EMEC 361 - Measurement & Instrument Lab  1
EGEN 310R - Multidisc Engineering Design  3
Year Total: 14 16
Senior YearCredits
FallSpring
EMEC 489R - Mech Eng Design Capstone I2  
EMEC 425 - Advanced Thermal Systems3  
EMEC 445 - Mechanical Vibrations3  
Professional Electives6  
EMEC 499R - Mech Eng Design Capstone II  3
EGEN 488 - Fundamentals of Engineer Exam  0
Professional Electives  6
Professional Elective - Take one of the following:  3
EMEC 403 - CAE IV--Design Integration
EMEC 405 - Finite Element Analysis
University Core Electives  3
Year Total: 14 15
Total Program Credits: 128

Students cannot enroll in any course without successfully completing prerequisites and the co-requisite requirements to those prerequisite courses.

A minimum of 128 credits is required for graduation; 42 of these credits must be in courses numbered 300 and above.